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Abstract

An antiplane problem of a finite thickness cracked layer bonded to a viscoelastic substrate is considered.
Complex potential function is derived via the application of the Laplace transform and a special technique
of analytical continuation associated with the image method. A dislocation function is introduced to solve
the boundary condition along the crack border by means of singular integral equations. Some typical
viscoelastic models and its corresponding stress intensity factors are also discussed. The results show that,
subjected to constant load, the time-dependent stress intensity factor may increase or decrease with time
evolution. This is affected by the orientation of crack as well as the relative strength of the layer and
substrate. © 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

The purpose of this work is to investigate a finite thickness cracked layer bonded to a viscoelastic
half-space substrate subjected to antiplane shear. Most engineering materials, including metals,
are known to creep under sustained constant loads and relax while being subjected to a constant
strain. The failure mechanism is mainly dependent on the relative strength of the cohesive layer
and the substrate. The understanding and prediction of the long-term failure behavior is important
because products with time-dependent properties have been widely applied in many engineering
designs.

For viscoelastic fracture, Schapery (1984) showed that the parameters analogous to the Jintegral
and energy release rate may be used for quasi-static crack growth in a class of nonlinear viscoelastic
materials under finite strain. Schapery also developed the correspondence principles which establish
a simple relationship between mechanical states of elastic and viscoelastic media. When viscoelastic
effects are included in the analysis, it seems that analytic results may be obtained only for mode

*Fax: 00 886 2 6209832 ; e-mail : rcc@mail.sjsmit.edu.tw

0020-7683/99/$ - see front matter © 1998 Elsevier Science Ltd. All rights reserved
PII:S0020-7683(98)00058-4



1782 R.C. Chang | International Journal of Solids and Structures 36 (1999) 1781-1797

III deformation. Several papers have appeared in the literature dealing with crack propagation
along the interface between two viscoelastic media. Sills and Benveniste (1981) determined the
stress intensity factor for crack propagating steadily between two different viscoelastic half-planes,
modeled as Maxwell materials, and driven by an exponentially decaying load applied to the crack
surface. Banks-Sills and Benveniste (1983) considered the same problem with the materials modeled
as standard solids. Atkinson and Chen (1996) found the solution of viscoelastic composite under
mode III load. They considered that medium 2 is contained in a layer sandwiched between semi-
infinite half space of medium 1. That is, sandwiched layer composed of two dissimilar media is
derived in their work. In this paper, the multi-layers problem of three dissimilar media, even one
of them may be assumed to be empty, is presented.

Honien et al. (1992) derived the solution for two circular cylindrical elastic inclusions perfectly
bonded to an elastic matrix of infinite extent. They obtained a rapidly convergent series with an
explicit general term involving the complex potential of the corresponding homogeneous problem
via iterations of Mobius transformations. For the cracked layer, however, it is impossible to
achieve a closed form solution. An alternative method for solving such complicated crack problems
may be formulated in terms of a system of singular integral equations by using the related Green’s
function, such as dislocation or concentrated force solution, in conjunction with the technique of
superposition. This method has clear advantages in solving the problem by applying a numerical
treatment. In the derivation of singular integral equations, the selection of the auxiliary function
determines whether the kernels have weak or strong singularities. The kernel with Cauchy-type
singularity has been widely used to solve many crack problems which can be reduced to a system
of algebraic equations. The numerical results are obtained by applying appropriate orthogonal
polynomials. On the other hand, the singular integral equation with a logarithmic singular kernel
is also applied frequently to crack problems. Chen and Cheung (1990) solved some elastic half-
plane problems by using log-type singular integral equations based on elementary solutions and
the principle of superposition. Recently, Chao and Gao (1997) solved the thin cracked layer
bonded to an elastic half-space media problem using iterations of Mobius transformations and
singular integral technique.

In this work, a viscoelastic problem is derived by using the Laplace transform, and the multiple
layers solution is found by the image method, also called iterations of Mobius transformations.
The application of the log-type singular integral technique is used for solving the cracked body.
Some typical examples are obtained by a Kelvin—Maxwell three parameters model to simulate the
viscoelastic property. The result for the time-dependent stress intensity factor is also discussed.

2. Governing equation

The relation between strains ¢; and stresses ¢;; can be written in the form
8{i = si//(lakl (l?]a ka l = 17 2: 3)9 (1)

where s;;, denote the compliance tensors. Unless otherwise stated, repeated indices imply
summation. Due to the symmetry of material property, the generalized Hooke’s law shown in eqn
(1) can be expressed in contracted notation as
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Em = SpnOn (m7 n= 19 27 R 6) (2)
where the standard correspondence is adopted, that is
{Sm} = [&11,822, €33, 2623, 2831, 2812]Ta

{O'm} :[0-1190-2290-33762.%03150-]2]Ta 3)

and the superscript 7" denotes the transpose. The relation between s,,, and s,;, is analogous except
that the numerical factors are needed, e.g. s;; = $1111, S1a = 251123, Sas = 482323, . . ., €tc. For two-
dimensional problem, i.e., with geometry and external loading invariant in the direction normal
to x;x,-plane, all physical components are independent of the coordinate x;. Furthermore, a
material body is said to undergo anti-plane deformation when the displacement field satisfies

up =u, =0, uy = us(xy,Xx,), 4

i.e., the only nonvanishing component of displacement, with respect to a Cartesian coordinate
system 0x,x,X3, is u3, which is a function of the coordinates x, and x, only. The only nonvanishing
infinitesimal strain components are

&31 = &13 =5
1
€32 = &33 = U39, Q)

where a subscript after a comma stands for differentiation with respect to this index, i.e.
A,;; = 04,/0x;. The equation of equilibrium without body forces can be written as

031.1+03,, =0. ©)
According to the solution given by Lekhnitskii (1963), the complex variable z can be defined as

z = X+ ux,, 7
where u is the root of the characteristic equation

Sqs—2845u+sssp” =0, 3)

with positive imaginary part. Therefore, the stresses and displacement can be expressed by a
holomorphic function ¢(z) as

031 = 2SR{M¢/(Z)}5
033 = _2ER{¢/(Z)},

us =2R{icep(2)}, )
where ‘R indicates the real part of a complex and
¢ = (544855 —S3s5) "2, (10)
Similarly, the resultant torque becomes
T = ([o3, dx, —03,dx,] = 2R{¢(2)} + T, (11)

where 'y denotes the torsion at an arbitrary point. Equation (9) and (11) give the complex potential
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expression for an anisotropic elastic material. For viscoelastic material, the time dependent strains
¢;; and stresses o,; can be written in the hereditary integral form (Fliigge, 1975)

t

&;(1) = S;j/cz(O)GkI(I)JrJ St =)0 () dS () k1= 1,2,3), (12)

0

where s,,(f) denote the creep compliance tensors. In contracted notation, eqn (12) can be expressed
as

Em = Smn *0, (man = 1727* . 76) (13)

The quantities S, are the linear integral operators, applied to the function g(¢)

t

S * g (1) = 5, (0)g (1) +J S (1= 8)g(8) d&. (14)

0
Taking the Laplace transform, eqn (13) becomes

(D) = $(P)G,(D), (15)

where the notation f(p) denotes the Laplace transform of f(f) and p is the Laplace variable.
Consequently, following the Lekhnitskii’s expression, the stresses and displacement of viscoelastic
field can be written as

651 = 2R{Ad’ ()},
65, = —2R{P(9)},
iy = 2R{ich(2)),
T=2R{p(%) +T,, (16)

¢ = (844555 _ﬁs)l"aa

Z =X, +[x,, )
and f is the root with positive imaginary part of the characteristic equation

§44—2§45ﬂ+§55ﬂ2 =0. (18)

To simplify the problem, only isotropic materials are considered in the following discussion. Notes
that the anisotropic formulation of anti-plane problem in the present derivation is still valid for
an isotropic body. For isotropic material, §,, = §s5s = §, §45s = 0, eqn (17) becomes

¢ = (844855 —835)'? =8, (19)
then the isotropic stresses and displacement are given by
63, = 2N{id'(2)},
632 = —2R{¢'(2)},
iy = 2R{is(2)},
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T=2R{p(z)} +T,, (20)
where z = Z because the characteristic value p is independent on time in isotropic case, i.e.,
p=p=i

3. Bilinear transformation

The purpose of this section is to show briefly, for the homogeneous problem, how the solution
of multiple layer problems can be obtained by simple algebraic manipulations. First, consider the
double layer problem as shown in Fig. 1. The upper and lower half space are occupied by D, and
D,, respectively. The upper half space (D,) is subjected to arbitrary singularities. Assume that ¢,(z)
represents these singularities as if D, occupied the whole space. /,(z) and ,(z) are the cor-
responding holomorphic functions in the regions D, and D,. Therefore, the complex potential is
given by

J)l(z) = (130(2)“‘1&1(2)» zeD,,
$:(2) = 2(2), zeD,. Q1)

Assuming that the interface has perfect bonding, the traction (or resultant force) and displacement
across the interface must be continuous. Therefore,

TH+T-, 4 =43, (22)

along x,-axis, where superscript + and — refer to upper and lower half-space, respectively. Using
eqn (20), eqn (22) can be written as

51 (8o (x1) + 1 ()] — i [$o<xi)+$l ()] = ifz[x&_z(xl)—xﬁ}(xl)l, (23)
[0 (1) + 1 (x)]+[do (1) + 1 (x1)] = 1 (x)) + 2 (x)). (24)

One of the important properties of holomorphic functions used in the method of analytical
continuation is that if /(z) is holomorphic in upper half space (or lower half space), then (z) is
holomorphic in lower half space (or upper half space). From this property, the holomorphic
function of the half space can be extended to the whole space. Holomorphic functions ,(z) and
¥2(2) in eqn (21) need to satisfy continuity of torsion and displacement along the interface x,-axis.
Substituting eqn (21) into eqns (9) and (11), after simple algebraic manipulations, it gives

T2

Ty

Fig. 1. Double-layers with singularities at upper layer.
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$1(2) = do(2) +3y(2), zeD,,
$2(2) = (1+3)¢o(2), zeDy, (25)
where overbar denotes the complex conjugate, and o is a bi-material constant defined as
S =5
§1+5,

o= (26)
which § is defined in eqn (19). The subscript value denote dissimilar media D, and D,. Equation
(25) is the solution for dissimilar media subjected to arbitrary singularities. Referring to Fig. 2,
consider a thin layer with thickness 2/ bonded to two different media. The notations D, D, and D,
denote the middle thin layer, upper and lower region, respectively. Following eqn (25), the solution
for the triple-layers can be solved by the method of image (Honein et al., 1992 ; Chao and Gao,
1997). The stress functions satisfying the continuous conditions on L, are given by

‘ﬁl(z)zéo(z)“‘&l(lao(z)a zeD,,
$2(2) = do(2)+d1ho(4,2), zeD,,

b(2) = do(2) =, po(A4,2), zeD, 27)
with

. §—5,

OC1 - §+§] ’ (28)

where ¢,(z) is the singularities at D and the transform function is defined as A,z = z+ 2hi. Another
mapping function A,z = z—2hi is used to deal with the continuous conditions along L,, and eqn
(27) becomes

$1(2) = Po(2) + 1Py (2) +620o(A22) + 610, (41 4:2), zeD),
‘ﬁz(z) = (ﬁo(z)+021(50(AIZ)+022(£0(Z)+021022(£1(AIZ)7 zeD,,

b(2) = ¢o(2) +611(412) +6,Po(A,2) + 6,6, (A, 4,2), zeD, (29)
with
T2
D,
<« Ly
20 <|
D
<
L,
D,

Fig. 2. Triple-layers with singularities at middle layer.
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§—3§,
0, = . 30
T §+5, (30)

Repeating eqn (27) and eqn (29), the stress functions are given by
(]3(2) = (lgo + Z (021022)”&0(]‘/[”2)"’ Z (o”clo”cz)”(ﬁo(N”Z) +d, Z (021022)"4;0(141]\7"2)
n=1 n=1 n=0

+dy Y (dh)'$o(A,M"z), zeD, (31)
n=0

él(z)=(1+ozl){¢3o<z)+ozzi(ozlozz)"d?o(AzM"zHi(ozlozz)"éo(M"z)}, zeD,, (32)

<IA52(Z) =(1+d,) {J)o(z) +d, i (021022)”&0(141]\/”2)4‘ i (021022)”&0(]\]'72)}7 zeD,, (33)
where
Aiz=z2—(=1D2ih (k=1,2), (34)

and M"z = (4,A4,)"z = z+4nih, N'z = (A,A,)"z = z—4nih, which is called M6bius transformation
or Bilinear transformation (Saff and Snider, 1976). Equations (31)—(33) are uniformly convergent
since the material constants provide |o,0,] < 1 (Honein et al. 1992). Taking the inverse Laplace
transform of eqns (31)—(33), the viscoelastic solution to multiple layers is found.

Consider a thin layer bonded to a half-space substrate, as shown in Fig. 3. In terms of previous
derivative, this means the upper half-space is empty. Equations (23)—(26) yield &, = 1 or —1 if the
boundary condition of L, is displacement or traction specified, respectively. This implies that §, = 0
as &, = 1, and §, tends to infinite as &, = — 1. Even for these conditions, the complex potential
solution derived in eqns (31)—(33) still leads to a convergent series, which can be obtained by
differentiating the formal series solution term by term. Substituting &, = — 1 into eqns (31)—(33)
gives

X2
To
- L1
N LL Bx1 o
D L
A/\ Vs
7 P Le

Fig. 3. Finite cracked layer bonded to half-space substrate.
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" " o0 ” o0 . o0 -
P(2) = do(2)+ L (= D)5 (M"2) + 3 (= 1)'d3o(N"2)+ ) (—1)""'d5(4,N"2)
n=1 n=1 n=0

+ Y (= 1)'a5" ¢o (A, M"z), zeD, (35)
n=0

o0

$2(2) =(1+4ds) {qﬁo(z) + Y (=)o (4, N" ) + Y (— 1)"oz';<130(zv"z)}, zeD,, (36
n=1 n=0
where ¢,(z) vanishes for this case. Equation (35) and (36) are the solution to a thin layer bonded
to another substrate with traction free condition on the surface.

4. Finite thickness cracked layer

A 2h thickness layer bonded to a half-space substrate subjected to an antiplane shear 7, on the
layer surface is considered (Fig. 3). The crack has length 2a and arbitrary angle «. This problem
can be solved by using the superposition method associated with the application of singular integral
technique. The singular function of homogeneous medium corresponding to a point force 7,
applied at z, is given by

iT,

¢y’ (2) =, log(z—z0) H(1—10), (37)
T
where H(t—t,) denotes the Heaviside unit step function. Therefore, taking the Laplace transform

to eqn (37) and substituting it into eqns (35) and (36), gives

N iT, e 0P o0
oV (z) = (‘)‘T [log(z—zo) + > (= 1)"d3 log(z+4nhi—z,)
n=1

S (— 1)+ '@ log(z — 4nhi—2hi—2,)
=0

=

+ Y (—1)"d5 log(z—4nhi—z,) +
n=1 7
+ Z (= 1D)y'ast! 10g(z—4nhi+2hi—z‘0)} zeD, (3%)

n=0

A T —lop 0
¢ (z) = %(Ho@z) [log(z—zo)—l— Y (= 1) '@ log(z — 4nhi— 2hi— 2,)
n=0

mp
+Z(—1)"’023log(z—4nhi—zo)} zeD,. (39)
n=0

Taking inverse Laplace transform

ag +ioo

o = rﬁm V() e dp, PV (z) = J dV(2) e dp, (40)

1) —io0 ag—ioo



R.C. Chang | International Journal of Solids and Structures 36 (1999) 1781-1797 1789

yields the stress functions. Consider the crack L to be situated in middle layer, D, as shown in Fig.
3. The corresponding singular function of homogeneous medium is given by

—1
P5(2) = 4va b(n) log(z—<)dn, CelL, (41)

where the dislocation function b(5) indicates the component of displacement discontinuties across
the dislocation line. Taking Laplace transform of eqn (41) and substituting it into eqn (31), gives

) I =
PP =, U b(n)log(z—¢) dn+ Zl(— 1)”02’4 b(in) log(z +4nhi—¢) dn

4ns L

+ i (—=1)'as J b(n)log(z—4nhi— &) dy

n=1

+ Y (=) 'as J b(n) log(z—4nhi—2hi— &) dn
n=0

L

+ i (—1)"gs+! J b(n) log(z—4nhi+2hi— &) dn} zeD, (42)
9 (2) = ;I;(l +ds) U b(n) log(z—&) dn+ io(— 1y tds J b(n) log(z —4nhi—2hi— &) dy

= L

+ Z(—l)"o@’éj
n=0

L

b(n) log(z—4nhi—¢&) dr]], zeD,. (43)
Similarly, the stress functions can be solved by taking inverse Laplace transform

() = J

ag —ioo

ag +ioo ag +ioo

¢ (2)e”dp, ¢ (2) = J ¢ (2) € dp. (44)

ay —ioo

The unknown dislocation function b(#) appearing in eqn (41) will be obtained on the basis that
the resultant force applied on crack surface must vanish, i.e.

TV(z)+T?(z) =0, ze€L, (45)

where the resultant torsion 7 is in eqn (11) and superscripts (1), (2) denote the resultant torsion
induced by concentrated load and crack dislocation, respectively. Furthermore, the dislocation
function needs to satisfy the requirement for a single-valued displacements, is

meym=o. (46)

5. Time-dependent stress intensity factor

In order to perform the numerical calculation, boundary conditions and material properties
need to be specified. The cracked coating layer is considered as an elastic material. Without the
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spring 7 [ YVV—

-
11

dashpot

Fig. 4. Kelvin-Maxwell three parameters model.

Laplace transform, eqns (35) and (36) can also be degenerated into elastic solution. Let its material
properties be

S4s = Sss =89, S45 =0, zeD, 47)

where s, corresponds to the inverse of shear modulus. The half-space substrate D, is considered as
a viscoelastic medium. A Kelvin—-Maxwell three-parameter model is applied to simulate this
viscoelastic behavior (Fig. 4). The constitutive relation shown in eqn (12) can be written as

&n(1) = Sy [Un(t) +B ff (1—=5)a,(9) di} (48)

where 52, is the creep compliance at ¢ = 0, and f(¢) = e~ *, where / denotes the relaxation time. B
is a constant defined as B = A(s;2, — So) /S, Where 5.2, is the long-term creep compliance at 7 = oo.
Meanwhile, the viscoelastic constants of D, are specified as

0 0 0 0 i 0 )
sha=383 =15, sp=s5=s), sis5=s535=0, zeD. (49)

Figure 5 illustrates some creep compliance behavior for various relaxation constant 4 = 0.1, 1, 10,
respectively, with s = s,, s/ = 2s° under constant stress o,. Figure 5 shows that the strain &(7)

&(t)/ 0030

Fig. 5. Creep compliance behavior.
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converges to its long-term value as 1 — co. Moreover, &(¢) approaches e(o0) rapidly as A increases.
Substituting eqns (47), (49) into eqns (38), (39), the stress functions for concentrated torsion 7
at z, become

—1lop

b2y = 10 (loa(z— 20) +log(z— 2hi—z
B =" llog(e—z0) +log(z —2hi—2,)
—d, log(z+2hi—zy))—d,log(z—4hi—zy)+---] zeD, (50)
. [T, e "o
P\ (z) = % [log(z—zy) +log(z—2hi—z,)

+O€2 log(Z_ZO)+OCA2 log(Z_zhi_Zo)+"'] ZeDz, (51)

where &, is a function of Laplace argument p. Substituting eqn (30) into eqns (50), (51) and taking
the inverse Laplace transform, as an example, gives

ToH(t—1 11 ,
¢V (z) = loin()) {log(z—zo) +log(z—2hi—zy) — [— 3T 3e3"(”°)/2} log(z+2hi—2z,)
1 1 —3Mt—19)/2 .
— —§+§e o2 \log(z—4hi—z¢)+--+p, zeD, (52)
iTo(t—t 11 ,
oV (z) = Lol h) 0(47r o) {log(z—zo) +log(z—2hi—z,) + [— 3t 363)'(”0)"2:|10g(z—zo)

1 1 ‘
+ |:— 3+ 3e3)*(’"’)"'2}10g(z—2hi—z‘0) +-- -}, zeD,, (53)

where s° = s5,, s/ = 2s°. Considering crack problem, the dislocation function appearing in the
singular integral of eqn (41) will be solved numerically using the appropriate interpolation formu-
lae. In order to perform the numerical calculation, the crack is approximated by # line segments.
Since the dislocation function b(y) contains square-root singularity at the vicinity of the crack tip,
the interpolation formulae in local coordinates #, and #, for each crack tip element are defined as
(Chen and Cheung, 1990)

2d d, +
b(ny) = by < d +l;71 _1>+b1 ( ]2d1111>, (54)

and

2dn dn_nn
b(’/ln) - bn( d, _n”_1>+bn1 < Zdn >5 (55)

where the dislocation function contains square-root singularity as #, > —d, and 5, — d,. The
interpolation formulae for the intermediate segments in local coordinates n; (2 <j<n—1) are
taken as
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di—n; di+n;
2d, 70 g

J

b(n;) = b, (56)
where d; denotes the half length of each line segment and b; are the unknown coefficients to be
determined. The traction-free condition of eqn (45), after letting z, be the nodes of each line
segment, provides n+ 1 algebraic equations. These n+ 1 integral equation together with the single-
value displacement condition of eqn (46) can be solved to yield n+ 2 algebraic equation in n+2

unknowns, by, b,,...,b,and I'y of eqn (11). The Mode III stress intensity factor K is defined as
(Irwin, 1957)
K = lif{)l\/ 2nra,(r), (57)
where r is the radial position ahead of the crack tip. Similarly,
) 2n
Ky = ;1_%1 d; (), (58)

4s\ﬂ

with r behind the crack tip. Note that d;(r) indicates the displacement jump, i.e., d; = uf —u; .
Therefore, from eqns (41), (54), (55) and (58), the viscoelastic stress intensity factor at two crack
tips are directly related to the coefficients b, and b, by (Chen and Cheung, 1990)

1
Ky = S /nd, b, atcrack tip A,

1
Ky = S nd,b, atcrack tip B, (59)

where A and B denote crack tip points at left and right ends, respectively. It must be emphasized
that the stress intensity factors defined in eqn (59) are time-dependent parameters.

6. Numerical results

Results of stress intensity factor for some typical examples are shown. The time-dependent stress
intensity factor is expressed as dimensionless form, i.e., Ky /Toa~ . For all cases, the geometry is
hia =2, d =0, and the instant of the force applies at ¢, = 0. Furthermore, the relative material
strength s° = s,, ) = 25° is assumed. Figure 6 illustrates the dimensionless time-dependent stress
intensity factors of the horizontal crack tip-B with respect to 4 = 0.1, 1, 10. It shows that, K
increases monotonically with time until it reaches a constant value which is known as elastic
solution. For different relaxation constant A, Kj;; converges more rapidly as /4 increases. Figure 7
shows Kj;; in the same condition except that the crack is oblique at o = 45°. In contrast with Fig.
6, the time evolution of Kj;; in this case decreases monotonically as time increases. It implies that
the maximum Kj;; occurs at the instant that the external force is applied and it reduces to the elastic
value while the applied force remains constant.

Figure 8 (crack tip-B) and Fig. 9 (crack tip-A) show the time-dependent K;;; with respect to
various crack angle for A = 1. In Fig. 8, it is seen that o = 45° has maximum value, and K;;; =0
at o = 90°. Figure 9 indicates that o = 0° possesses the maximum absolute value of K;; at the left
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0.350

0.348

0.342 — 1

0.340 | | _1 | | | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 6. Time-dependent stress intensity factor at crack tip-B for o = 0°.

0.49 —

0.48

0.46

0.45 I | | | I | | | | J
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 7. Time-dependent stress intensity factor at crack tip-B for o = 45°.

side crack tip, which is the negative value of the right side crack tip since the geometry is symmetric.
In Figs 8 and 9, the variation of Kj; is not evident with respect to the time change, since the
relaxation time is relatively small (4 = 1). However, K;;; varies as respected in Fig. 10 (crack tip-
B) and Fig. 11 (crack tip-A) for the case of 4 = 10. Note that Kj;; = 0 for each crack tip if the
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0.5 —
0.4 —
§ 03 —
T -
3 e _n°
e oz T =0
3} - — 45
oo b -- - 60
B - — 90
oo-— — ——— - - - — = = — —
0.1 | | 1 | 1 | 1 | 1 |
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 8. Time-dependent stress intensity factor at crack tip-B for 4 = 1.

oo-r—————-—- - — - - - == -
I a=0°o
----- 30°
N -0.1 E— 45
§ -
3 - - — 90
|
\ 02— —-——————" """~
)
—03F
—0.4 ! | 1 | ] | 1 | ] J
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 9. Time-dependent stress intensity factor at crack tip-A for 4 = 1.

crack is perpendicular to the load (¢ = 90°). Moreover, it must be emphasized that the absolute
value of stress intensity factor decrease with time to approach the elastic value while the applied
force remains constant, since the stiffness of the substrate is less than the crack layer. The time
evolution of the stress intensity factor is affected by the orientation of crack as well as the relative
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Fig. 10. Time-dependent stress intensity factor at crack tip-B for 4 = 10.
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Fig. 11. Time-dependent stress intensity factor at crack tip-A for 4 = 10.

strength of each medium. The skew-symmetry of Kj;; caused by the symmetry of geometry in the
case of « = 0 is still valid.

Figure 12 illustrates the numerical convergence of the given method with A = 10, « = 0. The
general solution to the antiplane three-material media problem gives in eqns (31)—(33) is uniformly
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Fig. 12. Numerical convergence of time-dependent stress intensity factor at crack tip-B for 4 = 10.

convergent on compact sets provided |o,0,| < 1 even for the case of o;&+1 (Honein et al., 1992).
Figure 12 shows that the series solution has good convergence since the error between the first
eight terms and the first sixteen is within 0.3 percent.

7. Conclusions

A general solution to a finite thickness cracked layer bonded to a viscoelastic substrate under
antiplane shear is presented. Based on the Laplace transform and the analytical continuation
theorem, a complex potential is formulated. The resulting singular integral equation with a
logarithmic singular kernel is established from the resultant force across the crack surface. This
leaves unknown dislocation function appearing in the singular integral equation which can then
be solved numerically. Some typical examples are obtained by a Kelvin—Maxwell three parameters
model of viscoelastic behavior. The result shows that, for long time, the viscoelastic solution will
approach constant value, the elastic solution. It must be emphasized that the time-dependent stress
intensity factor decreases while the applied force remains constant because the stiffness of the
substrate is less than the crack layer. This shows that the time evolution of stress intensity factor
is affected by the interaction of material strength of each layer as well as the relaxation time of
viscoelastic medium. The results provides the reference to choose a suitable substrate to reduce the
damage of the structure.
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