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Abstract

An antiplane problem of a _nite thickness cracked layer bonded to a viscoelastic substrate is considered[
Complex potential function is derived via the application of the Laplace transform and a special technique
of analytical continuation associated with the image method[ A dislocation function is introduced to solve
the boundary condition along the crack border by means of singular integral equations[ Some typical
viscoelastic models and its corresponding stress intensity factors are also discussed[ The results show that\
subjected to constant load\ the time!dependent stress intensity factor may increase or decrease with time
evolution[ This is a}ected by the orientation of crack as well as the relative strength of the layer and
substrate[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The purpose of this work is to investigate a _nite thickness cracked layer bonded to a viscoelastic
half!space substrate subjected to antiplane shear[ Most engineering materials\ including metals\
are known to creep under sustained constant loads and relax while being subjected to a constant
strain[ The failure mechanism is mainly dependent on the relative strength of the cohesive layer
and the substrate[ The understanding and prediction of the long!term failure behavior is important
because products with time!dependent properties have been widely applied in many engineering
designs[

For viscoelastic fracture\ Schapery "0873# showed that the parameters analogous to the J integral
and energy release rate may be used for quasi!static crack growth in a class of nonlinear viscoelastic
materials under _nite strain[ Schapery also developed the correspondence principles which establish
a simple relationship between mechanical states of elastic and viscoelastic media[ When viscoelastic
e}ects are included in the analysis\ it seems that analytic results may be obtained only for mode
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III deformation[ Several papers have appeared in the literature dealing with crack propagation
along the interface between two viscoelastic media[ Sills and Benveniste "0870# determined the
stress intensity factor for crack propagating steadily between two di}erent viscoelastic half!planes\
modeled as Maxwell materials\ and driven by an exponentially decaying load applied to the crack
surface[ Banks!Sills and Benveniste "0872# considered the same problem with the materials modeled
as standard solids[ Atkinson and Chen "0885# found the solution of viscoelastic composite under
mode III load[ They considered that medium 1 is contained in a layer sandwiched between semi!
in_nite half space of medium 0[ That is\ sandwiched layer composed of two dissimilar media is
derived in their work[ In this paper\ the multi!layers problem of three dissimilar media\ even one
of them may be assumed to be empty\ is presented[

Honien et al[ "0881# derived the solution for two circular cylindrical elastic inclusions perfectly
bonded to an elastic matrix of in_nite extent[ They obtained a rapidly convergent series with an
explicit general term involving the complex potential of the corresponding homogeneous problem
via iterations of Mo�bius transformations[ For the cracked layer\ however\ it is impossible to
achieve a closed form solution[ An alternative method for solving such complicated crack problems
may be formulated in terms of a system of singular integral equations by using the related Green|s
function\ such as dislocation or concentrated force solution\ in conjunction with the technique of
superposition[ This method has clear advantages in solving the problem by applying a numerical
treatment[ In the derivation of singular integral equations\ the selection of the auxiliary function
determines whether the kernels have weak or strong singularities[ The kernel with Cauchy!type
singularity has been widely used to solve many crack problems which can be reduced to a system
of algebraic equations[ The numerical results are obtained by applying appropriate orthogonal
polynomials[ On the other hand\ the singular integral equation with a logarithmic singular kernel
is also applied frequently to crack problems[ Chen and Cheung "0889# solved some elastic half!
plane problems by using log!type singular integral equations based on elementary solutions and
the principle of superposition[ Recently\ Chao and Gao "0886# solved the thin cracked layer
bonded to an elastic half!space media problem using iterations of Mo�bius transformations and
singular integral technique[

In this work\ a viscoelastic problem is derived by using the Laplace transform\ and the multiple
layers solution is found by the image method\ also called iterations of Mo�bius transformations[
The application of the log!type singular integral technique is used for solving the cracked body[
Some typical examples are obtained by a KelvinÐMaxwell three parameters model to simulate the
viscoelastic property[ The result for the time!dependent stress intensity factor is also discussed[

1[ Governing equation

The relation between strains oij and stresses sij can be written in the form

oij � sijklskl "i\ j\ k\ l � 0\ 1\ 2#\ "0#

where sijkl denote the compliance tensors[ Unless otherwise stated\ repeated indices imply
summation[ Due to the symmetry of material property\ the generalized Hooke|s law shown in eqn
"0# can be expressed in contracted notation as
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om � smnsn "m\ n � 0\ 1\ [ [ [ \ 5# "1#

where the standard correspondence is adopted\ that is

"om# � ðo00\ o11\ o22\ 1o12\ 1o20\ 1o01ŁT\

"sm# � ðs00\ s11\ s22\ s12\ s20\ s01ŁT\ "2#

and the superscript T denotes the transpose[ The relation between smn and sijkl is analogous except
that the numerical factors are needed\ e[g[ s00 � s0000\ s03 � 1s0012\ s33 � 3s1212\ [ [ [ \ etc[ For two!
dimensional problem\ i[e[\ with geometry and external loading invariant in the direction normal
to x0x1!plane\ all physical components are independent of the coordinate x2[ Furthermore\ a
material body is said to undergo anti!plane deformation when the displacement _eld satis_es

u0 � u1 � 9\ u2 � u2"x0\ x1#\ "3#

i[e[\ the only nonvanishing component of displacement\ with respect to a Cartesian coordinate
system 9x0x1x2\ is u2\ which is a function of the coordinates x0 and x1 only[ The only nonvanishing
in_nitesimal strain components are

o20 � o02 � 0
1
u2\0\

o21 � o12 � 0
1
u2\1\ "4#

where a subscript after a comma stands for di}erentiation with respect to this index\ i[e[
Ai\j � 1Ai:1xj[ The equation of equilibrium without body forces can be written as

s20\0¦s21\1 � 9[ "5#

According to the solution given by Lekhnitskii "0852#\ the complex variable z can be de_ned as

z � x0¦mx1\ "6#

where m is the root of the characteristic equation

s33−1s34m¦s44m
1 � 9\ "7#

with positive imaginary part[ Therefore\ the stresses and displacement can be expressed by a
holomorphic function f"z# as

s20 � 1R"mf?"z##\

s21 � −1R"f?"z##\

u2 � 1R"icf"z##\ "8#

where R indicates the real part of a complex and

c �"s33s44−s1
34#0:1[ "09#

Similarly\ the resultant torque becomes

T � Ððs20 dx1−s21 dx0Ł � 1R"f"z##¦G9\ "00#

where G9 denotes the torsion at an arbitrary point[ Equation "8# and "00# give the complex potential
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expression for an anisotropic elastic material[ For viscoelastic material\ the time dependent strains
oij and stresses sij can be written in the hereditary integral form "Flu�gge\ 0864#

oij"t# � sijkl"9#skl"t#¦g
t

9

s?ijkl"t−j#skl"j# dj "i\ j\ k\ l � 0\ 1\ 2#\ "01#

where sijkl"t# denote the creep compliance tensors[ In contracted notation\ eqn "01# can be expressed
as

om � Smn ( sn "m\ n � 0\ 1\ [ [ [ \ 5#[ "02#

The quantities Smn are the linear integral operators\ applied to the function `"t#

Smn ( `"t# � smn"9#`"t#¦g
t

9

s?mn"t−j#`"j# dj[ "03#

Taking the Laplace transform\ eqn "02# becomes

o¼m"p# � s¼mn"p#s¼ n"p#\ "04#

where the notation f¼"p# denotes the Laplace transform of f"t# and p is the Laplace variable[
Consequently\ following the Lekhnitskii|s expression\ the stresses and displacement of viscoelastic
_eld can be written as

s¼20 � 1R"m¼f¼ ?"z¼##\

s¼21 � −1R"f¼ "z¼##\

u¼2 � 1R"ic¼f¼ "z¼##\

T
 � 1R"f¼ "z¼##¦G
9\ "05#

where

c¼ � "s¼33s¼44−s¼1
34#0:1\

z¼ � x0¦m¼x1\ "06#

and m¼ is the root with positive imaginary part of the characteristic equation

s¼33−1s¼34m¼¦s¼44m¼
1 � 9[ "07#

To simplify the problem\ only isotropic materials are considered in the following discussion[ Notes
that the anisotropic formulation of anti!plane problem in the present derivation is still valid for
an isotropic body[ For isotropic material\ s¼33 � s¼44 � s¼\ s¼34 � 9\ eqn "06# becomes

c¼ �"s¼33s¼44−s¼1
34#0:1 � s¼\ "08#

then the isotropic stresses and displacement are given by

s¼20 � 1R"if¼ ?"z##\

s¼21 � −1R"f¼ ?"z##\

u¼2 � 1R"is¼f¼ "z##\
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T
 � 1R"f¼ "z##¦G
9\ "19#

where z � z¼ because the characteristic value m is independent on time in isotropic case\ i[e[\
m � m¼ � i[

2[ Bilinear transformation

The purpose of this section is to show brie~y\ for the homogeneous problem\ how the solution
of multiple layer problems can be obtained by simple algebraic manipulations[ First\ consider the
double layer problem as shown in Fig[ 0[ The upper and lower half space are occupied by D0 and
D1\ respectively[ The upper half space "D0# is subjected to arbitrary singularities[ Assume that f¼ 9"z#
represents these singularities as if D0 occupied the whole space[ c¼ 0"z# and c¼ 1"z# are the cor!
responding holomorphic functions in the regions D0 and D1[ Therefore\ the complex potential is
given by

f¼ 0"z# � f¼ 9"z#¦c¼ 0"z#\ z $ D0\

f¼ 1"z# � c¼ 1"z#\ z $ D1[ "10#

Assuming that the interface has perfect bonding\ the traction "or resultant force# and displacement
across the interface must be continuous[ Therefore\

T
¦¦T
−\ u¼¦
2 � u¼−

2 \ "11#

along x0!axis\ where superscript ¦ and − refer to upper and lower half!space\ respectively[ Using
eqn "19#\ eqn "11# can be written as

is¼0 ðf¼ 9"x0#¦c¼ 0"x0#Ł−is¼0 ðf¼Þ9"x0#¦c¼Þ0"x0#Ł � is¼1 ðc¼ 1"x0#−c¼Þ1"x0#Ł\ "12#

ðf¼ 9"x0#¦c¼ 0"x0#Ł¦ðf¼Þ9"x0#¦c¼Þ0"x0#Ł � c¼ 1"x0#¦c¼Þ1"x0#[ "13#

One of the important properties of holomorphic functions used in the method of analytical
continuation is that if c"z# is holomorphic in upper half space "or lower half space#\ then c¹ "z# is
holomorphic in lower half space "or upper half space#[ From this property\ the holomorphic
function of the half space can be extended to the whole space[ Holomorphic functions c¼ 0"z# and
c¼ 1"z# in eqn "10# need to satisfy continuity of torsion and displacement along the interface x0!axis[
Substituting eqn "10# into eqns "8# and "00#\ after simple algebraic manipulations\ it gives

Fig[ 0[ Double!layers with singularities at upper layer[
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f¼ 0"z# � f¼ 9"z#¦a¼f¼Þ9"z#\ z $ D0\

f¼ 1"z# � "0¦a¼#f¼ 9"z#\ z $ D1\ "14#

where overbar denotes the complex conjugate\ and a is a bi!material constant de_ned as

a¼ �
s¼0−s¼1

s¼0¦s¼1

"15#

which s¼ is de_ned in eqn "08#[ The subscript value denote dissimilar media D0 and D1[ Equation
"14# is the solution for dissimilar media subjected to arbitrary singularities[ Referring to Fig[ 1\
consider a thin layer with thickness 1h bonded to two di}erent media[ The notations D\ D0 and D1

denote the middle thin layer\ upper and lower region\ respectively[ Following eqn "14#\ the solution
for the triple!layers can be solved by the method of image "Honein et al[\ 0881 ^ Chao and Gao\
0886#[ The stress functions satisfying the continuous conditions on L0 are given by

f¼ 0"z# � f¼ 9"z#¦a¼0f¼ 9"z#\ z $ D0\

f¼ 1"z# � f¼ 9"z#¦a¼0f¼ 9"A0z#\ z $ D1\

f¼ "z# � f¼ 9"z#−a¼0f¼ 9"A0z#\ z $ D\ "16#

with

a¼0 �
s¼−s¼0

s¼¦s¼0

\ "17#

where f¼ 9"z# is the singularities at D and the transform function is de_ned as A0z � z¹¦1hi[ Another
mapping function A1z � z¹−1hi is used to deal with the continuous conditions along L1\ and eqn
"16# becomes

f¼ 0"z# � f¼ 9"z#¦a¼0f¼ 9"z#¦a¼1f¼ 9"A1z#¦a¼0a¼1f¼ 9"A0A1z#\ z $ D0\

f¼ 1"z# � f¼ 9"z#¦a¼0f¼ 9"A0z#¦a¼1f¼ 9"z#¦a¼0a¼1f¼ 0"A0z#\ z $ D1\

f¼ "z# � f¼ 9"z#¦a¼0f¼ 0"A0z#¦a¼1f¼ 9"A1z#¦a¼0a¼1f¼ 9"A0A1z#\ z $ D\ "18#

with

Fig[ 1[ Triple!layers with singularities at middle layer[
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a¼1 �
s¼−s¼1

s¼¦s¼1

[ "29#

Repeating eqn "16# and eqn "18#\ the stress functions are given by

f¼ "z# � f¼ 9¦ s
�

n�0

"a¼0a¼1#nf¼ 9"Mnz#¦ s
�

n�0

"a¼0a¼1#nf¼ 9"Nnz#¦a¼0 s
�

n�9

"a¼0a¼1#nf¼ 9"A0N
nz#

¦a¼1 s
�

n�9

"a¼0a1#nf¼ 9"A1M
nz#\ z $ D\ "20#

f¼ 0"z# �"0¦a¼0# 6f¼ 9"z#¦a¼1 s
�

n�0

"a¼0a¼1#nf¼ 9"A1M
nz#¦ s

�

n�9

"a¼0a¼1#nf¼ 9"Mnz#7\ z $ D0\ "21#

f¼ 1"z# �"0¦a¼1# 6f¼ 9"z#¦a¼0 s
�

n�0

"a¼0a¼1#nf¼ 9"A0N
nz#¦ s

�

n�9

"a¼0a¼1#nf¼ 9"Nnz#7\ z $ D1\ "22#

where

Akz � z¹−"−0#k1ih "k � 0\ 1#\ "23#

and Mnz � "A0A1#nz � z¦3nih\ Nnz �"A1A0#nz � z−3nih\ which is called Mo�bius transformation
or Bilinear transformation "Sa} and Snider\ 0865#[ Equations "20#Ð"22# are uniformly convergent
since the material constants provide =a0a1= ³ 0 "Honein et al[ 0881#[ Taking the inverse Laplace
transform of eqns "20#Ð"22#\ the viscoelastic solution to multiple layers is found[

Consider a thin layer bonded to a half!space substrate\ as shown in Fig[ 2[ In terms of previous
derivative\ this means the upper half!space is empty[ Equations "12#Ð"15# yield a¼0 � 0 or −0 if the
boundary condition of L0 is displacement or traction speci_ed\ respectively[ This implies that s¼0 � 9
as a¼0 � 0\ and s¼0 tends to in_nite as a¼0 � −0[ Even for these conditions\ the complex potential
solution derived in eqns "20#Ð"22# still leads to a convergent series\ which can be obtained by
di}erentiating the formal series solution term by term[ Substituting a¼0 � −0 into eqns "20#Ð"22#
gives

Fig[ 2[ Finite cracked layer bonded to half!space substrate[



R[C[ Chan` : International Journal of Solids and Structures 25 "0888# 0670Ð06860677

f¼ "z# � f¼ 9"z#¦ s
�

n�0

"−0#na¼n
1f¼ 9"Mnz#¦ s

�

n�0

"−0#na¼n
1f¼ 9"Nnz#¦ s

�

n�9

"−0#n¦0a¼n
1f¼ 9"A0N

nz#

¦ s
�

n�9

"−0#na¼n¦0
1 f¼ 9"A1M

nz#\ z $ D\ "24#

f¼ 1"z# �"0¦a¼1# 6f¼ 9"z#¦ s
�

n�0

"−0#n¦0a¼n
1f¼ 9"A0N

nz#¦ s
�

n�9

"−0#na¼n
1f¼ 9"Nnz#7\ z $ D1\ "25#

where f¼ 0"z# vanishes for this case[ Equation "24# and "25# are the solution to a thin layer bonded
to another substrate with traction free condition on the surface[

3[ Finite thickness cracked layer

A 1h thickness layer bonded to a half!space substrate subjected to an antiplane shear T9 on the
layer surface is considered "Fig[ 2#[ The crack has length 1a and arbitrary angle a[ This problem
can be solved by using the superposition method associated with the application of singular integral
technique[ The singular function of homogeneous medium corresponding to a point force T9

applied at z9 is given by

f"0#
9 "z# �

iT9

3p
log"z−z9#H"t−t9#\ "26#

where H"t−t9# denotes the Heaviside unit step function[ Therefore\ taking the Laplace transform
to eqn "26# and substituting it into eqns "24# and "25#\ gives

f¼ "0# "z# �
iT9 e−t9p

3pp $log"z−z9#¦ s
�

n�0

"−0#na¼n
1 log"z¦3nhi−z9#

¦ s
�

n�0

"−0#na¼n
1 log"z−3nhi−z9#¦ s

�

n�9

"−0#n¦0a¼n
1 log"z−3nhi−1hi−z¹9#

¦ s
�

n�9

"−0#na¼n¦0
1 log"z−3nhi¦1hi−z¹9#%\ z $ D\ "27#

f¼ "0#
1 "z# �

iT9 e−t9p

3pp
"0¦a¼1# $log"z−z9#¦ s

�

n�9

"−0#n¦0a¼n
1 log"z−3nhi−1hi−z¹9#

¦ s
�

n�9

"−0#na¼n
1 log"z−3nhi−z9#%\ z $ D1[ "28#

Taking inverse Laplace transform

f"0# � g
a9¦i�

a9−i�

f¼ "0# "z# etp dp\ f"0#
1 "z# � g

a9¦i�

a9−i�

f¼ "0#
1 "z# etp dp\ "39#
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yields the stress functions[ Consider the crack L to be situated in middle layer\ D\ as shown in Fig[
2[ The corresponding singular function of homogeneous medium is given by

f"1#
9 "z# �

−0
3ps gL

b"h# log"z−j# dh\ j $ L\ "30#

where the dislocation function b"h# indicates the component of displacement discontinuties across
the dislocation line[ Taking Laplace transform of eqn "30# and substituting it into eqn "20#\ gives

f¼ "1# "z# �
−0
3ps¼ $gL

b"h# log"z−j# dh¦ s
�

n�0

"−0#na¼n
1 gL

b"h# log"z¦3nhi−j# dh

¦ s
�

n�0

"−0#na¼n
1 gL

b"h# log"z−3nhi−j# dh

¦ s
�

n�9

"−0#n¦0a¼n
1 gL

b"h# log"z−3nhi−1hi−j¹# dh

¦ s
�

n�9

"−0#na¼n¦0
1 gL

b"h# log"z−3nhi¦1hi−j¹# dh%\ z $ D\ "31#

f¼ "1#
1 "z# �

−0
3ps¼

"0¦a¼1# $gL

b"h# log"z−j# dh¦ s
�

n�9

"−0#n¦0a¼n
1 gL

b"h# log"z−3nhi−1hi−j¹# dh

¦ s
�

n�9

"−0#na¼n
1 gL

b"h# log"z−3nhi−j# dh%\ z $ D1[ "32#

Similarly\ the stress functions can be solved by taking inverse Laplace transform

f"1# "z# � g
a9¦i�

a9−i�

f¼ "1# "z# etp dp\ f"1#
1 "z# � g

a9¦i�

a9−i�

f¼ "1#
1 "z# etp dp[ "33#

The unknown dislocation function b"h# appearing in eqn "30# will be obtained on the basis that
the resultant force applied on crack surface must vanish\ i[e[

T "0# "zs#¦T "1# "zs# � 9\ zs $ L\ "34#

where the resultant torsion T is in eqn "00# and superscripts "0#\ "1# denote the resultant torsion
induced by concentrated load and crack dislocation\ respectively[ Furthermore\ the dislocation
function needs to satisfy the requirement for a single!valued displacements\ is

gL

b"h# dh � 9[ "35#

4[ Time!dependent stress intensity factor

In order to perform the numerical calculation\ boundary conditions and material properties
need to be speci_ed[ The cracked coating layer is considered as an elastic material[ Without the
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Fig[ 3[ KelvinÐMaxwell three parameters model[

Laplace transform\ eqns "24# and "25# can also be degenerated into elastic solution[ Let its material
properties be

s33 � s44 � s9\ s34 � 9\ z $ D\ "36#

where s9 corresponds to the inverse of shear modulus[ The half!space substrate D1 is considered as
a viscoelastic medium[ A KelvinÐMaxwell three!parameter model is applied to simulate this
viscoelastic behavior "Fig[ 3#[ The constitutive relation shown in eqn "01# can be written as

om"t# � s9
mn $sn"t#¦B g

t

9

f"t−j#sn"j# dj%\ "37#

where s9
m\n is the creep compliance at t � 9\ and f"t# � e−lt\ where l denotes the relaxation time[ B

is a constant de_ned as B � l"s�
mn−s9

mn#:s9
mn\ where s�

mn is the long!term creep compliance at t � �[
Meanwhile\ the viscoelastic constants of D1 are speci_ed as

s9
33 � s9

44 � s9
v \ s�

33 � s�
44 � sf

v\ s9
34 � s�

34 � 9\ z $ D[ "38#

Figure 4 illustrates some creep compliance behavior for various relaxation constant l � 9[0\ 0\ 09\
respectively\ with s9

v � s9\ sf
v � 1s9

v under constant stress s9[ Figure 4 shows that the strain o"t#

Fig[ 4[ Creep compliance behavior[
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converges to its long!term value as t : �[ Moreover\ o"t# approaches o"�# rapidly as l increases[
Substituting eqns "36#\ "38# into eqns "27#\ "28#\ the stress functions for concentrated torsion T9

at z9 become

f¼ "0# "z# �
iT9 e−t9p

3pp
ðlog"z−z9#¦log"z−1hi−z¹9#

−a¼1 log"z¦1hi−z¹9#−a¼1 log"z−3hi−z9#¦= = =Ł z $ D\ "49#

f¼ "0#
1 "z# �

iT9 e−t9p

3pp
ðlog"z−z9#¦log"z−1hi−z¹9#

¦a¼1 log"z−z9#¦a¼1 log"z−1hi−z¹9#¦= = =Ł z $ D1\ "40#

where a¼1 is a function of Laplace argument p[ Substituting eqn "29# into eqns "49#\ "40# and taking
the inverse Laplace transform\ as an example\ gives

f"0# "z# �
iT9H"t−t9#

3p 6log"z−z9#¦log"z−1hi−z¹9#−$−
0
2

¦
0
2

e−2l"t−t9#:1% log"z¦1hi−z¹9#

−$−
0
2

¦
0
2

e−2l"t−t9#:1% log"z−3hi−z9#¦= = =7\ z $ D\ "41#

f"0#
1 "z# �

iT9"t−t9#
3p 6log"z−z9#¦log"z−1hi−z¹9#¦$−

0
2

¦
0
2

e−2l"t−t9#:1% log"z−z9#

¦$−
0
2

¦
0
2

e−2l"t−t9#:1% log"z−1hi−z¹9#¦= = =7\ z $ D1\ "42#

where s9
v � s9\ sf

v � 1s9
v [ Considering crack problem\ the dislocation function appearing in the

singular integral of eqn "30# will be solved numerically using the appropriate interpolation formu!
lae[ In order to perform the numerical calculation\ the crack is approximated by n line segments[
Since the dislocation function b"h# contains square!root singularity at the vicinity of the crack tip\
the interpolation formulae in local coordinates h0 and hn for each crack tip element are de_ned as
"Chen and Cheung\ 0889#

b"h0# � b9 0X
1d0

d0¦h0

−01¦b0 0
d0¦h0

1d0 1\ "43#

and

b"hn# � bn 0X
1dn

dn−hn

−01¦bn−0 0
dn−hn

1dn 1\ "44#

where the dislocation function contains square!root singularity as h0 : −d0 and hn : dn[ The
interpolation formulae for the intermediate segments in local coordinates nj "1 ¾ j ¾ n−0# are
taken as
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b"hj# � bj−0

dj−hj

1dj

¦bj

dj¦hj

1dj

\ "45#

where dj denotes the half length of each line segment and bj are the unknown coe.cients to be
determined[ The traction!free condition of eqn "34#\ after letting zs be the nodes of each line
segment\ provides n¦0 algebraic equations[ These n¦0 integral equation together with the single!
value displacement condition of eqn "35# can be solved to yield n¦1 algebraic equation in n¦1
unknowns\ b9\ b0\ [ [ [ \ bn and G9 of eqn "00#[ The Mode III stress intensity factor KIII is de_ned as
"Irwin\ 0846#

KIII � lim
r:9

z1prs21"r#\ "46#

where r is the radial position ahead of the crack tip[ Similarly\

KIII � lim
r:9

z1p

3szr
d2"r#\ "47#

with r behind the crack tip[ Note that d2"r# indicates the displacement jump\ i[e[\ d2 � u¦
2 −u−

2 [
Therefore\ from eqns "30#\ "43#\ "44# and "47#\ the viscoelastic stress intensity factor at two crack
tips are directly related to the coe.cients b9 and bn by "Chen and Cheung\ 0889#

KIII �
0
s
zpd0b9 at crack tip A\

KIII �
0
s
zpdnbn at crack tip B\ "48#

where A and B denote crack tip points at left and right ends\ respectively[ It must be emphasized
that the stress intensity factors de_ned in eqn "48# are time!dependent parameters[

5[ Numerical results

Results of stress intensity factor for some typical examples are shown[ The time!dependent stress
intensity factor is expressed as dimensionless form\ i[e[\ KIII:T9a

−0:1[ For all cases\ the geometry is
h:a � 1\ d � 9\ and the instant of the force applies at t9 � 9[ Furthermore\ the relative material
strength s9

v � s9\ sf
v � 1s9

v is assumed[ Figure 5 illustrates the dimensionless time!dependent stress
intensity factors of the horizontal crack tip!B with respect to l � 9[0\ 0\ 09[ It shows that\ KIII

increases monotonically with time until it reaches a constant value which is known as elastic
solution[ For di}erent relaxation constant l\ KIII converges more rapidly as l increases[ Figure 6
shows KIII in the same condition except that the crack is oblique at a � 34>[ In contrast with Fig[
5\ the time evolution of KIII in this case decreases monotonically as time increases[ It implies that
the maximum KIII occurs at the instant that the external force is applied and it reduces to the elastic
value while the applied force remains constant[

Figure 7 "crack tip!B# and Fig[ 8 "crack tip!A# show the time!dependent KIII with respect to
various crack angle for l � 0[ In Fig[ 7\ it is seen that a � 34> has maximum value\ and KIII � 9
at a � 89>[ Figure 8 indicates that a � 9> possesses the maximum absolute value of KIII at the left
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Fig[ 5[ Time!dependent stress intensity factor at crack tip!B for a � 9>[

Fig[ 6[ Time!dependent stress intensity factor at crack tip!B for a � 34>[

side crack tip\ which is the negative value of the right side crack tip since the geometry is symmetric[
In Figs 7 and 8\ the variation of KIII is not evident with respect to the time change\ since the
relaxation time is relatively small "l � 0#[ However\ KIII varies as respected in Fig[ 09 "crack tip!
B# and Fig[ 00 "crack tip!A# for the case of l � 09[ Note that KIII � 9 for each crack tip if the
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Fig[ 7[ Time!dependent stress intensity factor at crack tip!B for l � 0[

Fig[ 8[ Time!dependent stress intensity factor at crack tip!A for l � 0[

crack is perpendicular to the load "a � 89>#[ Moreover\ it must be emphasized that the absolute
value of stress intensity factor decrease with time to approach the elastic value while the applied
force remains constant\ since the sti}ness of the substrate is less than the crack layer[ The time
evolution of the stress intensity factor is a}ected by the orientation of crack as well as the relative
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Fig[ 09[ Time!dependent stress intensity factor at crack tip!B for l � 09[

Fig[ 00[ Time!dependent stress intensity factor at crack tip!A for l � 09[

strength of each medium[ The skew!symmetry of KIII caused by the symmetry of geometry in the
case of a � 9 is still valid[

Figure 01 illustrates the numerical convergence of the given method with l � 09\ a � 9[ The
general solution to the antiplane three!material media problem gives in eqns "20#Ð"22# is uniformly
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Fig[ 01[ Numerical convergence of time!dependent stress intensity factor at crack tip!B for l � 09[

convergent on compact sets provided =a0a1= ³ 0 even for the case of ai20 "Honein et al[\ 0881#[
Figure 01 shows that the series solution has good convergence since the error between the _rst
eight terms and the _rst sixteen is within 9[2 percent[

6[ Conclusions

A general solution to a _nite thickness cracked layer bonded to a viscoelastic substrate under
antiplane shear is presented[ Based on the Laplace transform and the analytical continuation
theorem\ a complex potential is formulated[ The resulting singular integral equation with a
logarithmic singular kernel is established from the resultant force across the crack surface[ This
leaves unknown dislocation function appearing in the singular integral equation which can then
be solved numerically[ Some typical examples are obtained by a KelvinÐMaxwell three parameters
model of viscoelastic behavior[ The result shows that\ for long time\ the viscoelastic solution will
approach constant value\ the elastic solution[ It must be emphasized that the time!dependent stress
intensity factor decreases while the applied force remains constant because the sti}ness of the
substrate is less than the crack layer[ This shows that the time evolution of stress intensity factor
is a}ected by the interaction of material strength of each layer as well as the relaxation time of
viscoelastic medium[ The results provides the reference to choose a suitable substrate to reduce the
damage of the structure[
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